Reactive oxygen species induce the association of SHP-1 with c-Src and the oxidation of both to enhance osteoclast survival.

نویسندگان

  • Ke Ke
  • Ok-Joo Sul
  • Eun-Kyung Choi
  • Ali M Safdar
  • Eun-Sook Kim
  • Hye-Seon Choi
چکیده

Loss of ovarian function causes oxidative stress as well as bone loss. We hypothesized that reactive oxygen species (ROS) induced by the failure of ovarian function are responsible for the bone loss by increasing the number of osteoclasts (OC). We found that ROS enhanced OC survival via Src homology 2 domain-containing phosphatase-1 (SHP-1), c-Src, Akt, and ERK. ROS induced the association of SHP-1 with c-Src as well as the oxidation of c-Src and SHP-1. This resulted in inactivation of SHP-1 and activation of c-Src via phosphorylation of Tyr(416). Knockdown of c-Src or SHP-1 abolished the effect of ROS on OC survival. Moreover, downregulation of SHP-1 upregulated activation of c-Src, Akt, and ERK in the absence of any stimulus, suggesting that inactivation of SHP-1 is required for OC survival. We demonstrated that the association and oxidation of c-Src and SHP-1 by ROS are key steps in enhancing OC survival, which are responsible for increased bone loss when ovarian function ceases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-3: Reactive Oxygen Species: A Dilemma for

Spermatozoa are very special cells and constantly exposed to the interphase between oxidative stress through high amounts of reactive oxygen species (ROS) and leukocytes, and reduction by means of scavengers and antioxidants. Considering the very special functions of spermatozoa as being the only cells with such high polarization and exerting their functions outside the body, even in a differen...

متن کامل

Reactive oxygen species induce reversible PECAM-1 tyrosine phosphorylation and SHP-2 binding.

Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) functions to control the activation and survival of the cells on which it is expressed. Many of the regulatory functions of PECAM-1 are dependent on its tyrosine phosphorylation and subsequent recruitment of the Src homology (SH2) domain containing protein tyrosine phosphatase SHP-2. The recent demonstration that PECAM-1 tyrosine pho...

متن کامل

Interaction of polyamine and proline on the activity of enzymatic and non‌-enzymatic compounds in the peel of three Citrus species under low temperature stress

Plants activate antioxidant defense mechanisms under stress, which help maintaining the structural integrity of cell components and possibly reduces oxidative damage.  Low temperature stress leads to the production of reactive oxygen species and oxidative damage to plants. In this study, the effect of putrescine and proline on reducing the production of reactive oxygen species and increasing th...

متن کامل

SHP-2 Binds to Caveolin-1 and Regulates Src Activity via Competitive Inhibition of CSK in Response to H2O2 in Astrocytes

Reactive oxygen species (ROS) regulate diverse cellular functions by triggering signal transduction events, such as Src and mitogen-activated protein (MAP) kinases. Here, we report the role of caveolin-1 and Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP-2) in H2O2-induced signaling pathway in brain astrocytes. H2O2-mediated oxidative stress induced phosphorylation of cave...

متن کامل

فعالیت آنزیمهای آنتی‌اکسیداتیو کاتالاز و گلوتاتیون ردوکتاز گلبولهای قرمز خون در بیماران مبتلا به گرفتگی عروق کرونر

ABSTRACT Free radicals and lipid peroxidation have been proposed to play a role in the pathogenesis of atherosclerosis. Reactive Oxygen species can induce the oxidation of low-density lipoproteins and LDL oxidation has been shown to be responsible for plaque formation in the vessel wall. However living cells and organisms are very well equipped with defense systems against the damaging...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 307 1  شماره 

صفحات  -

تاریخ انتشار 2014